512^(2/3)=x

Simple and best practice solution for 512^(2/3)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 512^(2/3)=x equation:



512^(2/3)=x
We move all terms to the left:
512^(2/3)-(x)=0
We add all the numbers together, and all the variables
-x+512^(+2/3)=0
We add all the numbers together, and all the variables
-1x+512^(+2/3)=0
We multiply all the terms by the denominator
-1x*3)+512^(+2=0
Wy multiply elements
-3x^2+2=0
a = -3; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-3)·2
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-3}=\frac{0-2\sqrt{6}}{-6} =-\frac{2\sqrt{6}}{-6} =-\frac{\sqrt{6}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-3}=\frac{0+2\sqrt{6}}{-6} =\frac{2\sqrt{6}}{-6} =\frac{\sqrt{6}}{-3} $

See similar equations:

| 3(3x(-3)+4)-5=-3x+-5 | | 11(x-5)-9=23x-148 | | -15n+10n=-90 | | 19h+2h-15h-h+3h=16 | | 7(n-6)=42 | | 6m-5=83 | | 9(w−9)−2=−7+ 7(w−8)9(w-9)-2=-7+ 7(w-8) | | −8x2+40x+48=0 | | 27=d-15 | | x6+x9=10 | | 12m-11m=10 | | 10c+2+-12c+4c=20 | | 3(6w-3)=-14 | | 8+ 2(x−6)=−2+2x−28+ 2(x-6)=-2+2x-2 | | 10=4–2x | | 5c-2c=-21 | | -5=d/12 | | 4h-2h=2 | | 2×(m+4)=10 | | -4x+7x+9=-4x-3-2 | | 6+9x-15+21=-2x+1 | | 6x-9=2x+20 | | b-30=85 | | 7=r9 | | 9^x+7=61 | | 6x–9=2x+20 | | 5m+10=55* | | 3.6b=720 | | 65+5x=200 | | 6x–4+3x–2=17 | | 7a-a=42 | | 0.5t=230 |

Equations solver categories